On Sparse Gaussian Chain Graph Models
نویسندگان
چکیده
In this paper, we address the problem of learning the structure of Gaussian chain graph models in a high-dimensional space. Chain graph models are generalizations of undirected and directed graphical models that contain a mixed set of directed and undirected edges. While the problem of sparse structure learning has been studied extensively for Gaussian graphical models and more recently for conditional Gaussian graphical models (CGGMs), there has been little previous work on the structure recovery of Gaussian chain graph models. We consider linear regression models and a re-parameterization of the linear regression models using CGGMs as building blocks of chain graph models. We argue that when the goal is to recover model structures, there are many advantages of using CGGMs as chain component models over linear regression models, including convexity of the optimization problem, computational efficiency, recovery of structured sparsity, and ability to leverage the model structure for semi-supervised learning. We demonstrate our approach on simulated and genomic datasets.
منابع مشابه
Speech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملGDAGsim: Sparse matrix algorithms for Bayesian computation
GDAGsim is a software library which can be used to carry out conditional sampling of linear Gaussian directed acyclic graph models, and hence can be used for the implementation of efficient block MCMC samplers for such models. This paper examines the software library and its design, and how it can be applied to problems in Bayesian inference.
متن کاملEfficient Sampling for Gaussian Graphical Models via Spectral Sparsification
Motivated by a sampling problem basic to computational statistical inference, we develop a toolset based on spectral sparsification for a family of fundamental problems involving Gaussian sampling, matrix functionals, and reversible Markov chains. Drawing on the connection between Gaussian graphical models and the recent breakthroughs in spectral graph theory, we give the first nearly linear ti...
متن کاملA sparse matrix approach to Bayesian computation in large linear models
This paper examines the problem of efficient Bayesian computation in the context of linear Gaussian Directed Acyclic Graph (DAG) models. Unobserved latent variables are grouped together in a block, and sparse matrix techniques for computation are explored. Conditional sampling and likelihood computations are shown to be straightforward using a sparse matrix approach, allowing MCMC algorithms wi...
متن کاملBayesian model selection in sparse Gaussian graphical models
Decoding complex relationships among large numbers of variables with relatively small data sets is one of the crucial issues in science. One approach to those problems is Gaussian graphical modeling, which describes conditional independence of variables through the presence or absence of edges in the underlying graph. In this paper, we introduce a novel Bayesian framework for Gaussian graphical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014